Douglas Weber
Akhtar and Bhutta Professor, Mechanical Engineering, Neuroscience Institute
Akhtar and Bhutta Professor, Mechanical Engineering, Neuroscience Institute
Douglas Weber is broadly interested in understanding the role of sensory feedback in supporting and regulating a wide range of perceptual, motor, cognitive, and autonomic functions. His research combines fundamental neuroscience and engineering research to understand physiological mechanisms underlying sensory perception, feedback control of movement, and neuroplasticity in sensorimotor systems. Knowledge gained from these studies is being applied to invent new technologies and therapies for enhancing sensory and motor functions after stroke, spinal cord injury, or limb loss. These principles are also being applied to develop wearable devices for enhancing sensory, motor, and cognitive functions in healthy humans. He is committed to transitioning outputs of his academic research into practical technologies that support real-world applications, and he works actively with industrial partners to bridge the gap from bench to market.
A founding member of DARPA’s Biological Technologies Office, Weber created and managed a portfolio of neurotechnology research programs to support the White House BRAIN initiative, launched by President Obama in 2013. He created DARPA’s HAPTIX, ElectRx, and TNT programs, which are developing implantable, injectable, and wearable neurotechnologies that restore natural motor and sensory functions for amputees, enable novel and drug-free therapies for treating inflammatory disease and mental health disorders, and promote plasticity in the brain to enhance learning of complex cognitive skills.
Weber completed post-doctoral training in the Centre for Neuroscience at the University of Alberta. He holds eight issued United States patents and has published extensively on a wide range of topics spanning sensorimotor neurophysiology, biomechanics, neural engineering, and physical medicine. He has mentored over 100 undergraduate, graduate and medical students and several post-doctoral fellows.
2001 Ph.D., Bioengineering, Arizona State University
2000 MS, Bioengineering, Arizona State University
1994 BS, Biomedical Engineering, Milwaukee School of Engineering
Pitt CTSI
ECE’s Pulkit Grover and MechE’s Doug Weber won $50,000 to research female pain
CMU Engineering
A CMU-led project team secured an award of up to $42M from ARPA-H to accelerate the development of implantable bioelectronic devices that deliver patient-specific therapy and monitor disease status.
Scientific American
MechE’s Doug Weber was asked by Scientific American about Neuralink’s first human trial, and he commented on the difficulty of measuring neuron activity, the possibility of setbacks, and future directions for the next clinical trial.
Axios
MechE’s Doug Weber spoke with Axios on a new treatment for arm paralysis, which is expected to be approved by the FDA.
CMU Engineering
In collaboration with Meta, Doug Weber’s lab is exploring how sEMG signals can enable people with spinal cord injuries to interact with computer and mixed reality systems.
CMU Engineering
To advance cell-based therapies, researchers have identified a novel device that makes on-site oxygen for biological cells transplanted inside the body.
CMU Engineering
ARPA-H has awarded $45 million to a multi-institutional team of researchers to rapidly develop sense-and-respond implant technology that could slash U.S. cancer-related deaths.
Wired
MechE’s Doug Weber discusses the future of bionic limbs and their ability to receive sensory feedback.
The New York Times
MechE’s Douglas Weber was mentioned in The New York Times for the research he and other researchers are working on which looks at restoring mobility in stroke patients.
CMU Engineering
Spinal cord stimulation technology developed by Douglas Weber in collaboration with the University of Pittsburgh offers new hope for people living with impairments that would otherwise be considered permanent.
Mechanical Engineering
CMU and Pitt collaborators will develop and test an implantable system to electrically stimulates the spinal cord of stroke survivors to reduce arm and hand motor impairment.
Psychology Today
MechE’s Doug Weber is among the team monitoring the first human implant of a brain-computer interface (BCI). The BCI was implanted at Mount Sinai Health System in New York City. The goal of the trial is to evaluate safety and efficacy in helping patients with ALS.